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Abstract

Romie is a decision support tool based on AI’s latest advances in the domain
of robust scheduling. Unlike all existing systems, the tool allows to (i) visu-
ally model the operational problem and context entirely (ii) optimize to find
near-optimal schedules while taking uncertainty into account and (iii) deal
with a combination of various key performance indicators (KPIs). It comes
with a web user interface. Part or all of the modelled activities may be as-
sociated to random variables describing their stochastic durations, in order
to produce schedules that are robust w.r.t. temporal uncertainty. Hence,
depending on the pursued KPIs, the schedules maximize a combination of
the following terms: the probability of satisfying the problem constraints,
the expected return/efficiency, the expected outcome quality, and even the
operators’ wellness by minimizing its expected extra-hours. Initially devel-
oped for spatial exploration and demonstration in the context of Mars analog
missions (i.e. missions on Earth that simulate condition and aspects of Mars
missions), this versatile tool is here applied to operations management in
both biotechnology manufacturing and robots parametrization in a cave ex-
ploration context.

1. Introduction

Project management realizes about 30% of the world gross product (Turner
et al., 2010). However, most of existing studies have solely been done in ma-
chine scheduling environments (Herroelen and Leus, 2005). How to deal
with processing time uncertainty when facing a larger, complex, scheduling

Preprint submitted to Engineering Applications of Artificial IntelligenceFebruary 28, 2022



problem which possibly involves multiple human and/or operators, unknown
probability distributions, hard deadlines and exotic constraints?

In this paper, we introduce a visual tool, Romie, for computer-aided op-
erations scheduling under uncertainty, and show how it has been successfully
applied to three very different case studies of real world human operations
management: 1) the UCL to Mars 2018 1 analogue mission that took place
at the Mars Research Desert Station (Utah), 2) the modelling and scheduling
of a manufacturing project in an real Belgian biotech company, and finally
3) the complex mission operations of the Jet Propulsion Laboratory (JPL)
team in the DARPA Subterranean Challenge. The results obtained from
our three case studies convey three very important messages: (a) Even for
very complicated and various different operational contexts, a common mod-
elling framework exists, being user friendly, visual, and rigorous at the same
time; (b) Even for real sized problems, computer-optimized solutions out-
perform the schedules hand-crafted by field experts in general, and serve as
a strong basis for decision making, as the deciders can always adapt and
reuse these depending on external factors; (c) Schedules obtained while tak-
ing uncertainty into account systematically outperform that obtained from
deterministic assumptions in terms of reliability and expected KPIs, while
preserving most of the solutions quality; the latter result remains valid even
when provided very bad representation of the uncertainty.

1.1. Description of the tool
Romie is an advanced planning and scheduling (APS) tool, i.e. a soft-

ware system aiming at supporting the decision makers in their operations
management and task scheduling, using a detailed domain model describing
the operational context. Romie uses combinatorial optimization in order to
generate and optimize robust plans for daily operations. The current key
functionalities are depicted in Fig. 1:

• User friendly, visual modelling of the problem at stake, in its own oper-
ational context: human and physical resources, operational constraints,
key performance indicators (KPIs), execution uncertainties.

• Robust scheduling : the optimization engine takes the time uncertainty
on each task’s duration into consideration, using modified-PERT dis-
tributions, yielding schedules with high probability of success.

1UCLouvain (Belgium) university. https://marsuclouvain.be
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Figure 1: Principal functionalities of Romie tool.

• KPI-guided scheduling : The schedules are optimized while pursuing (a
combination of) various KPIs, including success probability, expected
cost, expected quality, and even operators wellness.

In a research domain in constant evolution, Romie integrates state-of-the-art
advances in robust scheduling under uncertainty (Saint-Guillain et al., 2021).
Future versions will enable online monitoring of the operations, keeping the
schedule and the underlying model consistent with the current state of the
system, allowing the user to adapt and reoptimize future decisions based on
past outcomes.

Optimization engine. A local search (LS) based approach, exploiting well-
known sequence neighborhood operators (relocate, 2-opt, swap, . . . ) and
a simulated annealing meta-heuristic, is used to explore the solution space.
The LS algorithm uses sample average approximation (Kleywegt et al., 2002)
to evaluate the expected quality of a solution under time uncertainty. Each
new solution is compared with the incumbent one in terms of its relative gain
in each element of the ordered set of KPIs.

1.2. Timeline of Case Studies

This study presents a novel scheduling tool through three different case
studies. Each case study happened sequentially, following and further val-
idating different stages of the tool’s development. Section 3 describes the
UCL to Mars 2018 mission case study, which marked the very first stage
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Figure 2: Left: the Mars Desert Research Station in Utah. Right: extra-vehicular field
operations.

of the technology, assessing its ability to deal with complex projects made
of simple operational tasks, constraints and resources. Section 4 describes a
case study which took place in 2019 and 2020, in collaboration with a Belgian
biotech company. It permitted to extend our scheduling formalism and tech-
nology and reach a higher stage of applicability, in the complex real world
industrial context. At the time these first two studies were conducted, the
tool only consisted in a theoretical background, a modelling formalism and
a versatile scheduling engine. Namely, there was no user interface (UI). The
technology was validated, but not the ability of the end user to control and
use it. Section 5 describes the third case study, in which human operators
and robots from JPL collaborate in the final circuit of the DARPA Subter-
ranean Challenge, scheduled for September 2021. Romie has been provided
a brand new UI prototype, allowing (for the first time) an end-user to model
the problem using a user-friendly visual interface, run optimization processes
and visualize optimized schedules.

2. Related frameworks and software systems

There are many scheduling tools on the market. In a recent study,
Abramov et al. (2016) describe some of the most common ones (MS Project,
Primavera, Artemis, etc). However, one should pay attention to a fundamen-
tal difference between software systems under the very large denomination of
”scheduling (or planning) tools”, and the so-called ”advanced planning and
scheduling” (APS) tools (Stadtler et al., 2015). When called APS, in addi-
tion to the ability of visualizing and manipulating schedules, the tool should
come with an automated scheduling and optimization engine, able to gener-
ate solutions (i.e. schedules) based on a set of pre-specified operations and
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Figure 3: Top: visual models of two (out of seven) experiments conducted during the UCL
to Mars 2018 analog mission at MDRS. Top left: a soil analysis project in chemistry. Top
right: a project mixing biology and botanic. Bottom: part of an optimized schedule
followed the analog mission.

constraints (usually hidden to the user!). On the contrary, the vast major-
ity of non-APS tools, such as MS Project, are mostly complex Gantt chart
manipulation software systems. In other words, the user is still left with
the initial problem of providing a scheduling solution, that is, the ordered
sequences of tasks, each being assigned resources and scheduled times. In
what follows, we focus on existing systems that provide both the modeling
and the optimization capabilities.

Existing work either falls into a) being specifically designed for a partic-
ular application/mission or operational context or b) not having a generic,
integrated optimization system to generate robust schedules (from a prob-
abilistic point of view). Compared to the existing approaches, and to our
knowledge, Romie provides the following technological innovations :

1. Domain-independent graphical modelling. Through a user-friendly in-
terface, Romie provides to the user the ability of graphically drawing
the structure and constraints of its planning and scheduling problem,
including stochastic models for task durations.

2. Optimization under uncertainty. The optimization engine provided by
Romie allows the end-user to rapidly generate schedules that are robust.
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2.1. Planning and Scheduling in Space

The first planning and scheduling tools for space missions were dedicated
software systems, specialized to specific application domains.

Johnston and Miller (1994) described the SPIKE system, a general frame-
work for scheduling, developed by the Space Telescope Science Institute for
NASA’s Hubble Space Telescope. Other examples of aerospace scheduling
tools and applications are: Chien et al. (1999), developed for scheduling the
operations of a particular shuttle science payload (DATA-CHASER) with
primary focus on solar observation; Jónsson et al. (2000) for the Deep Space
One mission; Ai-Chang et al. (2004) for the Mars Exploration Rover mission;
Chien et al. (2005) for NASA’s Earth Observing One Spacecraft; and Cesta
et al. (2007) for the Mars-Express mission. Chien (2012) provides a detailed
survey on (semi-)automated planning & scheduling systems developed for
space applications.

As the need for more generic approaches to support multiple mission and
multiple domains increased, a planning/scheduling C++ library has been
proposed: ASPEN (Fukunaga et al., 1997, Rabideau et al., 1999, Chien et al.,
2000). At that time, ASPEN provided the elements that were commonly
found in existing complex planning and scheduling systems, for example for
generating operation schedules for the Rosetta orbiter Chien et al. (2021).
In 2009, ESA’s Advanced Planning and Scheduling Initiative (APSI) aimed
at developing a general software framework for supporting development of
AI planning and scheduling prototypes, for various types of space missions.
The APSI is described in Steel et al. (2009).

Presented in Yelamanchili et al. (2020), the Copilot system for Mars 2020
Rover mission does have a modelling system called COCPIT, and a planner,
but it is specifically designed for that mission.

2.2. Human Self-Scheduling in Space

Past space missions have had very limited experience in human self-
scheduling. In fact, Marquez et al. (2019) states that current human op-
erations, including extravehicular activities (EVAs), are “carefully chore-
ographed, and rehearsed events, planned to the minute by a large team of
EVA engineers, and guided continuously from Earth” (Bell and Coan, 2012,
Miller et al., 2015). Whereas the delay in communications from Earth is neg-
ligible when activities remain near from Earth (e.g. from the ISS), sending
(receiving) data to (from) Mars requires between 3 and 21 minutes. However,
human operations on Mars are expected to be carried at a faster rate than
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current rover missions (Mishkin et al., 2007), which implies new planning
strategies and tools that account for latency-impacted interactions (Eppler
et al., 2013). In addition, future planetary EVAs are likely to be driven by
science (Drake et al., 2010, Drake and Watts Kevin, 2014), requiring flexible
adaptations according to scientific samples. In such context, future human
space missions will have to enable some degree of crew autonomy and self-
scheduling capabilities.

In Deans et al. (2017), a suite of software tools called Minerva is proposed
in order to support operations planning and execution. Minerva and its com-
ponents have been tested during several planetary and space simulation mis-
sions, including the BASALT research program (described in Brady et al.,
2019) and four analog missions at NEEMO (Chappell et al., 2017, Marquez
et al., 2017). Compared to Minerva, the key differences of our proposed tool
Romie, in terms of functionalities, rely on the modelling interface and the
scheduling optimization engine, which enable strategical a priori planning.
In addition, the optimization is conducted while taking uncertainty into ac-
count. The Minerva suite is rather focused on tactical planning, including
geospatial planning, which allows crew path planning and coordination using
satellite maps. The strategical planning is assumed to be performed before
the start of the mission, and is therefore not covered by the Minerva suite.
However, even when a predefined schedule is provided prior to the start of
the operations, it is very likely that the schedule will require online modifica-
tions as the operations go. Marquez et al. (2021) showed the limits of human
self-scheduling when operators must solve and adapt the planning manually
while taking hard constraints into account (not even thinking about uncer-
tainty). By providing both a way to adapt the model and solve it using
an embedded optimization engine, Romie can be seen as complementary to
Minerva.

2.3. Human (Self-)Scheduling in the Industry

Before the ASPEN system described in Sec. 2.1, the idea of a generic
(i.e. domain-independent) planning and scheduling library originally comes
from the OZONE system of Smith et al. (1996), which has been applied to
manufacturing, transportation and logistics.

Naturally, using such libraries requires specific programming skills. Such
frameworks are therefore not a solution for enabling self-scheduling. Several
domain-specific applications have been proposed using systems like OZONE
(e.g. Smith and Lassila, 1993), but these generally appear to the user as a
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black box, in which the modification of any structural aspect of the scheduling
problem at stake remains, if it is not impossible, a very complex task.

In Papavasileiou et al. (2007) and Petrides et al. (2014), the authors argue
for the important role process simulation and scheduling tools in biophar-
maceutical production, and in particular, the ability of performing what-if
and/or sensitivity analysis in addition to optimization. However, because
existing tools do not allow the end-user to model the production problem at
stake, existing APS tools fail at meeting the resource and constraint structure
involved in problems as complex as biomanufacturing. As a consequence, the
stakeholders (when they can afford it) use expensive software systems, de-
veloped and bought specifically for their production processes (which hence
cannot evolve in time without further expenses).

In this paper, we present an innovative general tool, which can be con-
figured to meet a large range of operational contexts, from space missions to
biomanufacturing, without domain-specific developments.

2.4. Romie

Recall the two technological innovations of Romie, presented in the be-
ginning of this section: a) domain-independent graphical modelling and b)
optimization under uncertainty. Unlike all existing tools2, both modelling
and modifying the problem is now made accessible to the end-user, which is
critical for a reliable self-scheduling. Although being a hot research domain,
Romie is the first APS tool to propose an integrated robust (i.e. under un-
certainty) optimization engine. Having more robust (i.e. reliable) schedules,
the end users are more likely to avoid last minute rescheduling. Eventu-
ally, what-if analysis, as well as sensitivity analysis, become less relevant :
the solutions are optimized following directly the KPIs expected values and
considering the uncertanties related to task execution.

We believe that both a) and b) provide significantly more autonomy
to the end users, whom remain otherwise highly dependent of planning and
scheduling experts. Whereas the empirical contribution of point b is assessed
throughout this paper, the ability of the non-experts end-users to actually
”self-schedule” using a remains to be empirically tested. This is left for

2Up to our knowledge, the MapGen tool presented in Ai-Chang et al. (2004) was one
of the very first tools to propose a visual constraints editor. However, the latter was not
generic, but specific to its application case, the NASA’s MER mission.
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further research on the field3.

3. Robust Operations Management on Mars

The development of the Romie tool started with the UCL to Mars 2018
project. Unlike most scheduling problems, operations in a space mission must
be planned days ahead. Complex decision chains and communication delays
prevent schedules from being arbitrarily modified, hence online reoptimiza-
tion approaches are usually not appropriate. The problem of scheduling a set
of operations in a constrained context such as the Mars Desert Research Sta-
tion (MDRS, Fig. 2) is not trivial, even in its classical deterministic version.
It should be seen as a generalization of the well-known NP-complete job-shop
scheduling problem Lenstra and Kan (1979), which has the reputation of be-
ing one of the most computationally demanding (Applegate and Cook, 1991).
Hall and Magazine (1994) reinforces the importance of mission planning, as
25% of the budget of a space mission may be spent in making these decisions
beforehand, citing the Voyager 2 space probe for which the development of
the a priori schedule, involving around 175 experiments, required 30 people
during six months. Nowadays, hardware and techniques have evolved. It is
likely that a super-equipped (i.e. with a brand new laptop) human brain suf-
fices in that specific case. Yet, the problems and requirements have evolved
too. Instead of the single machine Voyager 2, space missions have to deal
with teams of astronauts. In fact, scheduling the activities in the ISS takes
weeks, even for a team of experienced planning experts (Dempsey, 2017).

3.1. Scheduling a Space Mission under Uncertainty

The purpose of the UCL to Mars 2018 analog mission being to simulate
intensive scientific activities in a extra-planetary context, the mission was or-
ganized based on 7 different research projects to be conducted at the MDRS,
from various fields including biology, particle physics, medicine, engineer-
ing, botanic, chemistry and finally AI. In total, more than 230 tasks were
involved by the seven research projects, with at least as many constraints.
In fact, the modelling each research project merged within a global problem
was inevitable, since all the activities at MDRS depend on the same limited

3At the time of writing, a Mars analog mission (M.A.R.S. UCLouvain, scheduled April
2022) is preparing at the Mars Desert Research Station, Utah, during which Romie will
be continuously used by analog astronauts during a simulated mission on the red planet.
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and shared set of resources. Some projects required extra vehicular activ-
ities (EVAs), which for security reasons require at least three participants
amongst the operators. EVAs usually take half a day, should be planned and
approved days ahead and happen at most once a day. All operators then had
their schedule linked to each others, even concerning research projects that
do not require EVAs.

Fig. 3 shows the modelling of two such research projects, together with
an excerpt of optimized schedule. At the MDRS however, computing an
optimal schedule becomes significantly less attractive as problem data, such
as the manipulation time of experiments, are different from their predicted
nominal values. This is what we refer to as uncertainty. In a constrained en-
vironment with shared resources and devices, when they arise such temporal
deviations can propagate to the remaining operations, eventually leading to
global infeasibility, that is, a mission failure. Given a mission schedule, a cen-
tral question is then the following: considering temporal uncertainty, what is
the actual probability of success of the mission? In Saint-Guillain (2019), we
investigated based on the real case study of a Mars analog mission, the im-
pact of stochastic robust modelling against a classical deterministic approach
on the reliability of a priori mission planning.

Uncertainty and Performance indicators. The main purpose of Saint-Guillain
(2019) was to compare both deterministic and robust stochastic approaches
to the problem of scheduling a set of scientific tasks under processing time
uncertainty, in the operational context of a Martian planetary habitat. We
empirically showed that taking uncertainty into account while optimizing the
schedules allows significant gains on average when applied on real instances
involving the constraints faced and objectives pursued during a two-week
Mars analog mission. The objectives were both optimizing the mission’s suc-
cess probability, namely the robustness, in terms of meeting the operational
constraints and deadlines, and maximizing the total scientific outcome, as
a linear combination of specific metrics, designed according to the scientific
objectives of each of the seven research projects. Therefore, the optimization
engine was computing a near-optimal schedule when optimizing the robust-
ness KPI first, and expected scientific outcome second.

Uncertainty on the Uncertainty. Contrary to other application domains which
may come with a huge number of observations, projects in human operations
management are hardly repeatable. However, accurate estimations of the

10



Figure 4: Varying the quality of the probability distributions, leading to five different
experimental assumptions. Blue: estimator distribution, used at optimization stage. Red,
both plain and dotted: real hidden distributions, revealed at execution stage.

probability distributions require a significant amount of observations, which
is often impossible in practice. One of the main contributions of our ap-
proach is that it computes decisions while taking uncertainty into account,
in terms of activity durations. In the context of human scheduling, these
decisions must then be taken solely based on the expert’s estimation of that
uncertainty, that is, on the stakeholder’s field experience, instead of statistics.

For that reason, the computational experiments did also take into account
uncertainty on the stochastic knowledge itself, by considering the real distri-
butions as unknown (or hidden). In Saint-Guillain (2019) the same compu-
tational experiments were reiterated under five different assumptions about
the estimator’s quality. The concept is illustrated in Fig. 4: five hypothetical
couples of both estimator and real distributions are drawn. The estimator
distribution is simply the distribution used to describe the duration of an
activity. It represents the current knowledge one has about the activity’s un-
certainty. The estimator distributions are the only information available at
optimization phase. Real (hidden) distributions are only revealed when the
computed schedules, therefore optimized considering blue distributions, were
executed in a simulation. The shapes of the real distributions were always
randomly generated, while controlling the resulting mean. In the first case
a), the estimators (which used to be normal distributions) were of very good
quality, since their means always coincide with that of the real distributions
(even if the shapes differ). In the third case c), these were of bad quality,
since each estimator mean may be up to 30% away from that of the asso-
ciated real distribution. Finally, the fourth d) (resp. fifth) case stands for
the situation in which all durations are underestimated (resp. overestimated,
e) in general. The results revealed that, even when using very bad approxi-
mations of the probability distributions, the computed solutions significantly
outperform those obtained from a classical deterministic formulation, while
preserving most of the solution’s quality.
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3.2. Experiments and Results

The aforementioned paper gives extensive details on both the experimen-
tal plan and results. In a nutshell, we observed that as the accuracy of the
probability distributions that describe the project task durations varies from
really accurate (no under/over estimation on average) to very bad (30% un-
der/over estimations on average), the proportion of the simulations in which
the schedules computed based on a classical deterministic model lead to a
successful execution varies from 5% to 8% only. Using our probabilistic
model, these success rates increase significantly, between 70% and 90%. Two
additional assumptions were tested, in which the durations were either sys-
tematically underestimated, or systematically overestimated. The first case
is naturally catastrophic, leading to success of approximately 0.1% for the
deterministic schedules, and 22% thanks to our stochastic model. The sec-
ond case is really interesting, as it describes a very common behaviour of
managers who have to face time uncertainty, which consists in systemati-
cally considering a duration larger than what they believe the tasks is likely
to last. In this particular context, our simulations showed that our stochastic
model increases the schedules’ robustness from 34% to 95%.

Benefits and Price of Robustness. Whereas we principally focused so far on
the robustness, in practice one is also necessarily interested in the outcome
or, alternatively, the price (or cost) of the a priori solution. For example,
suppose a solution A with a nice 90% robustness, but costing 100$. On the
other hand, you are provided an alternative solution B, obtained with a good,
old fashion, deterministic model. Solution B appears much less reliable with
only 30% robustness. However, B costs only 10$. Would you really go for a
solution A, which is three times more reliable, but ten times more expensive?
Probably, if you are planning a space mission or a surgery. Probably not, if
you are planning financial investments.

In the case of our space mission, the cost, or outcome, actually matters
and is expressed in terms of scientific goals and preferences to be optimized.
For instance, the top left model of Figure 3 stipulates that in order to max-
imize the scientific outcome, the delays between some of the activities must
be maximized. Remark that such an objective is in opposition with our ro-
bustness criterion, as one the main success issue relates to completing the
mission in time.

In terms of robustness, the experimental results clearly indicate the ben-
efits of our probabilistic model over a deterministic one, as even in the ideal
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case of all durations being overestimated on average, the resulting schedules
reveal three times more reliable (succeed in 95% of the cases). Furthermore,
independently of the estimators accuracy, the relative difference in terms of
the scientific outcome KPIs, between schedules produces from both models,
is of only 7% on average. In other words, even all durations being overesti-
mated and in our MDRS context, a deterministic schedule yields 7% more
science on average, whereas it is three times more likely to fail the mission.
This is the value of perfect information over uncertainty. On the other hand,
a success rate of 95% can be reached by sacrificing 7% of the outcome. This
is the benefits, and price, of robustness.

4. Biotech Manufacturing

As the day humans will live on Mars is still far ahead, we wanted to extend
our tool as well as the underlying technology to tackle significantly different
operational context, others than human space missions. A Belgian company,
specialized in biotechnology product manufacturing, accepted to collaborate
on the concrete project of modelling the scheduling problem involved in the
manufacturing of one of their most popular products, and eventually solving
this scheduling problem, at different scales.

4.1. Modelling in the Industrial Real World Contexts

Fig. 5 shows how their production problem was modelled, using the
exact same visual formalism than that used in the context of the UCL to
Mars 2018 mission. More precisely, the diagram depicted only represents
one single production campaign, involving around 85 tasks. However, for
efficiency reasons the company would usually run up to three production
campaigns in parallel, whereas the operational human and physical resources
remain fixed.

As the operational context in a biotech company significantly differs from
that of a space station, various additional exotic constraints had to be added
to the formalism, and the other scheduling optimization technology extended
consequently. For instance, running several production campaigns in parallel
involve specific constraints, stating how these may overlap or not. Natu-
rally, we had to cope with complex operator worktime management, such
as weekends, days off, part times, etc.. In particular, the concept of extra
working time, whenever an operator must remain on site later than normally
accepted, revealed of major importance. Finally, as the production process
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requires many tasks to be double checked, constraints of the form “task A
cannot be executed by the same operator than task B” were mandatory too,
and special constraints related to physical resources had to be designed as
well. These are just examples amongst the large number of additions that
extended the initial technology. Fig. 6 shows an example of solution for three
production campaigns in parallel.
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4.2. Problem Modelling made Simple

The modelling formalism used to communicate with our collaborators
from the biotech company, namely the language used to describe their schedul-
ing problem, is based on simple diagrams such as depicted in Fig. 5. In
practice, once the problem visually modelled, we translated the diagrams in
a mathematical language accepted by our scheduling engine. It is worth not-
ing that the time needed by our collaborators, being not scheduling experts,
to master the proposed visual modelling formalism (and autonomously draw
part of the models) revealed to be of five to ten one-hour meetings only.

4.3. Computing Robust production Schedules

Computational experiments involve from one to three production cam-
paigns. For each context, defined by the amount of campaigns and whether
the stochastic or the deterministic model was used, 10 solutions were opti-
mized. Average results are listed in Table 1. An example of such computed
schedule, for three campaigns in parallel, is shown in Fig. 6.

Optimizing Wellness: Stress Aversion. Cost-based KPIs, such as minimiz-
ing total production makespan, or quality-based KPIs such as the metric of
total scientific outcome considered in the UCL to Mars 2018 case study, are
classical objectives to be pursued. In a human context however, wellness
and stress aversion are key concepts that should be considered as important
as raw efficiency in the middle and long term. Our collaborators from the
biotech company recognized that a significant part of their employees’ stress
can be attributed to unexpected deviations, resulting in delays which, even-
tually, force the production team to do extra-hours in order to stick to the
constraints and deadlines. Consequently, it has been decided to consider the
expected total number of extra-hours as key performance indicator.

Performances of the deterministic model. The average reliability of the solu-
tions optimized under deterministic model significantly fall as the complexity
of the problem increases. Move from one production campaign to three cam-
paigns, the success rate under the over-estimation context falls from 40% to
12.5%, when the extra-hours (EHs) KPI is minimized prior to the makespan.
In fact, schedule with less planned EHs are more flexible, more likely to be
able to absorb unexpected delays, and thus more reliable in the end. In par-
ticular, when minimizing EHs the computed schedules come with 0.0 planned
EH whilst, eventually, around 4.3∼5.9 EHs are required on average, for one

17



production campaign. Given three campaigns, significantly larger deviations
are observed from the initially planned EHs of only 1 hour on average, which
increases up to 11.3∼23.6 hours. Larger deviations of the planned versus ob-
served makespan KPI are also measured as the size of the problem increases.

Performances of the stochastic model. Compared to the solutions obtained
when all durations are considered as perfectly known in advance, namely
when using a deterministic model, the average measured performances of the
schedules computed in light of uncertainty are ridiculously obvious. Whereas
the success rate can be maintained above 96% for three campaigns (instead
of 2.5%!), the price of this robustness as measured by the average differ-
ence in the makespan cost KPIs, is of only 13% (38.1 to 43.2 days) when
optimizing makespan first. When minimizing EHs first, makespan second,
taking uncertainty into account at optimization stage leads to schedules hav-
ing 98.7% chances of success on average, instead of 12.5%, with significantly
less work stress as the measured extra-hours are of 3.8∼9.9 hours, instead of
11.3∼23.6 hours. The price of robustness, in terms of production efficiency,
is however higher at it is now of +29% makespan (45.5 to 58.9 days). Yet,
anyone would be surprised by a manager that decides to save the 29% and
goes for a schedule having only 12.5% chances to succeed.
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5. DARPA Subterranean Challenge

NASA JPL’s Team CoSTAR4 is developing new technologies that are crit-
ical for enabling autonomous multi-robot exploration of large and unknown
underground voids. One example of the application of these technologies is
the DARPA Subterranean Challenge (SubT) where terrestrial cave explo-
ration can be seen as an analogue exploration mission for planetary subsur-
faces (e.g. Lunar and Martian caves), and as an application domain to prove
grounds for future space technologies. In SubT, robot teams are required to
rapidly map, navigate, and search underground environments including nat-
ural cave networks, tunnel systems, and urban underground infrastructure
for particular objects of interest (e.g. mannequin survivors, backpacks, cell
phones, helmets, etc.), called artifacts. Subterranean environments pose sig-
nificant challenges for manned and unmanned operations due to limited com-
munication and situational awareness. In the SubT competition in particular,
only a single human operator is allowed to interact with the robotic team.
CoSTAR’s robotic team consists of more than four robots with wheeled,
legged, and flying mobility.

Operating multiple robots with different capabilities in kilometer-long
underground environments can go beyond the cognitive capacity of a single
human supervisor – even with advanced autonomy in place. SubT operations
may involve cognitively demanding tasks such as monitoring 3D mapping of
the environment and localization accuracy, establishing communication links
between robots, assessing location and health of all robots, and submitting
detected artifacts within the allotted competition time. In order to facilitate
operations during the SubT competition, CoSTAR team has developed the
Copilot MIKE (Kaufmann et al., 2021), an autonomous assistant for human-
in-the-loop multi-robot operations. During complex and potentially stressful
exploration missions, MIKE helps by planning operation tasks related to set-
ting up and commanding the robots, while maintaining a bearable workload
and high situational awareness.

In this experiment we study the use of Romie to i) model the tasks and
constraints that are required during setup time and during competition, and
to ii) support the operator by scheduling the tasks in a way that maximizes
the robustness. This case study has principally differs from the two previous
ones by the scale of its time horizon to manage. Whereas the schedules at

4DARPA Subterranean Challenge Team CoSTAR. https://costar.jpl.nasa.gov
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Figure 7: The DARPA SubT problem structure, as designed by hand using a classical
diagram editor.

MDRS, as well as in the context of biotech production, typically involve sev-
eral weeks, the DARPA SubT lasts only one hour. In particular, the problem
at stake consists here at both 1) setting and getting all the exploration robots
for starting the mission (setup time) and 2) deploying the team of robots to
explore the target underground environment. The scheduling problem in-
volves setup tasks having nominal durations ranging between 10 and 120
seconds.

5.1. Problem Modelling

Figure 7 shows a graphical drawing of the problem structure. This di-
agram, as well as those shown in Figures 3 and 5, have been drawn using
GoogleDocs Drawings. The model involves two principal groups of activities:
the Base group (in blue) and the Robot group (in yellow). The Base group
includes unique activities that are common to all robots. The Robot group
represents all the activities specific to one robot. If we have 7 robots, there
are 7 duplicates of each activity from the Robot group. The main challenge
results in the fact that everything must be scheduled in order to fulfill the
time constraints, depicted in red. For instance, the Start Robot Logging ac-
tivity must append between 9:28am and 9:30am, for every robot. Finally, the
human operator is assumed to be able to carry on up to 4 activities at the
same time, whereas some activities (denoted by * in Fig. 7) can be entrusted
to MIKE, which could follow up to 5 activities in parallel. It is important
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to note that the only key performance index (KPI) here is the probability
of success, that is, the probability that the schedule actually respects all the
temporal constraints shown in red in Fig. 7. In fact, contrary to previous
case studies, the problem at stake here is no longer an optimization problem
but a constraint satisfaction problem, in the sense that there is no other goal
to be pursued than satisfying these constraints.

The Modelling User Interface. Our tool now integrates a visual modelling
user interface, depicted in Figure 8. The UI allows to describe the schedul-
ing problem structure, in terms of temporal and operational constraints.
It also allows to input constraints and activity properties, which were not
present in the hand-drawn diagram of Fig. 7. In particular, the model al-
lows for modified-PERT distributions, a probability distribution widely used
in risk analysis (Kamburowski, 1997), which has the advantage of enabling
asymmetric bounded probability distributions.
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5.2. Computing Robust Schedules

Our scheduling engine exploits parallelization paradigm to achieve reason-
able computation times Romie is capable of exploiting parallel computing.
On a 64 cores computation cluster (composed of two AMD EPYC 7302),
finding feasible solutions (i.e. schedules that fulfil the temporal constraints
listed in Fig. 7) takes less than 15 seconds only for problems with up to 15
robots. Up to 18 robots, it takes less than a minute to find its first feasible
solution. Once an initial solution has been found to be deterministic feasible,
meaning that it is feasible when considering all its durations as determinis-
tic, the engines switch on the probabilistic optimization mode and pursue its
duty while optimizing with respect to the expected KPIs: here the probabil-
ity of success only. No deterministic feasible solution was found for 19 robots
or more (in less than five minutes). An optimized schedule is depicted in Fig.
9, using the tool’s integrated visualization interface.

Still exploiting 64 cores, for problems involving up to 12 robots Romie
finds optimal solutions in less than 5 seconds. Of course, the nature of the
scheduling engine embedded in Romie, a local search based solution frame-
work, naturally prevents from providing any optimality proof in general.
For the DARPA SubT challenge however, the only optimized KPI being the
success probability, solutions with 1.0 success probability are necessarily op-
timal. In our case, Romie finds such solutions for instances involving up to
15 robots, in which 20 seconds only are required to find a first deterministic
feasible solution, and optimal solutions are found within approximately 2
minutes.

Average Performances of the Computed Schedules. As usual, the optimized
robust schedules are compared to solutions optimized based on deterministic
assumption, therefore measuring the average gain at optimizing based on a
probabilistic model against a classical, deterministic one. The average results
are provided in Table 2. Solutions optimized under the stochastic model sig-
nificantly outperform that of the deterministic one, in terms of reliability (i.e.
robustness), that is, the average percentage of simulation success under the
three different assumptions made on the quality of the stochastic knowledge
(i.e. accuracy of the chosen PERT distribution parameters for each activity
duration).
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Bots 1 4 6 10 15 16 17 18

Exa 91.0 82.8 67.8 31.9 0.1 0.0 0.0 0.0
Und 90.0 80.8 58.5 17.4 0.0 0.0 0.0 0.0
Ovr 93.3 88.1 81.4 52.7 9.6 7.0 4.8 0.2

Exa 100 100 100 100 100 95.6 61.5 0.3
Und 100 100 100 100 93.0 40.7 1.3 0.0
Ovr 100 100 100 100 100 100 97.9 56.4

Table 2: DARPA SubT challenge case study, involving up to 18 robots. We consider three
different assumptions about the stochastic knowledge: exact mean (Exa), [-3%,+10%]
under-estimations (Und) and [-10%,+3%] over-estimations (Ovr), as described for Table
2. First raws give the average percentage success, when schedules are optimized using a
deterministic model. The second set of raws give average results when Romie uses the
stochastic model.

6. Conclusions and Future work

In this paper we presented Romie, a state-of-the-art robust scheduling
tool, based on the principle of optimizing under time uncertainty. We de-
scribed three very different application cases that were handled with our
tool, showing the versatile aspect of Romie, which allows to model and solve
scheduling problem despite the different operational contexts. The more re-
cent case study shows that end users are actually able to visually describe
the scheduling problem at stake, and further visualize optimized solutions.
Once again, the benefits of using a probabilistic modelling approach, tak-
ing the time uncertainty of activities durations into account at optimization
stage, are clearly confirmed by the empirical average gains compared to a
classical deterministic approach. Our approach also allows to significantly
decrease extra hours and deviations from a priori decisions, hence reducing
the operators’ stress load in manufacturing context.

A new risk-aversion paradigm. Up to now, the classical paradigm in opera-
tions management to cope with uncertainty was based on “what if analysis”
and “sensitivity analysis”. What if analysis consists in optimizing a set of
solutions, each under a predefined scenarios (e.g. best-case, average-case,
worst-case). As showed in Saint-Guillain et al. (2021), from a theoretical
point of view this approach is a fundamentally flawed, as it violates the natu-
ral nonanticipativity constraints and therefore, may arbitrarily underestimate
the expected behavior of the solution (that is, the risk !). On the contrary,
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the optimization engine embedded in Romie is a completely different ap-
proach, proven to never underestimate the risk. Sensitivity analysis consists
in assessing the average behavior of a solution when subject to stochastic
variations (e.g. using Monte Carlo simulation). Given a particular schedule,
a sensitivity analysis will therefore approximate the expected quality (i.e.
expected KPIs) of the provided schedule under uncertainty. This however
does not help at finding the right schedule in the first place! Because its
optimization engine directly take uncertainty into account at schedule gener-
ation and optimization, the solutions computed by Romie directly optimize
their response to a sensitivity analysis. In other words, Romie’s optimiza-
tion engine turns both the (inadequate) what if analysis and the (incomplete)
sensitivity analysis, deprecated.

Future researches and development directions. Our tool currently integrates
the key functionalities for a priori robust scheduling under uncertainty. The
next logical step will naturally be to integrate online management function-
alities, namely monitoring and reoptimization. Online monitoring of the
operations aims at updating the schedule, as well as the underlying model,
in order to keep them consistent with the current state of the operations.
It eventually allows the possibility for adapting and reoptimizing future de-
cisions, in light of past decisions and outcomes. These additional features
will be useful for the scheduling of future research and operational projects.
Applications to biotech and pharmaceutical online manufacturing problems
are already running at the time of writing, as well as the next circuit of
the DARPA Subterranean Challenge (September 2021). Finally, a simulated
mission in a Mars analog habitat is planned in the near future with the
M.A.R.S. UCLouvain mission (April 2022), during which a team of 8 analog
astronauts will be assessed on their ability of self-schedule their own mission
(both a priori and on-the-fly) using Romie. In fact, past missions (e.g. UCL
to Mars 2018, Saint-Guillain 2019) have shown the importance of online re-
optimization and, in particular, the need for the crew to autonomously adapt
their science projects to unforeseen events.
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