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Abstract

We compare both deterministic and robust stochastic ap-
proaches to the problem of scheduling a set of scientific tasks
under processing time uncertainty. While dealing with strict
time windows and minimum transition time constraints, we
provide closed-form expressions to compute the exact prob-
ability that a solution has to remain feasible. Experiments,
taking uncertainty on the stochastic knowledge itself into ac-
count, are conducted on real instances involving the con-
straints faced and objectives pursued during a recent two-
week Mars analog mission in the desert of Utah, USA. The
results reveal that, even when using very bad approxima-
tions of probability distributions, solutions computed from
the stochastic models we introduce, significantly outperform
the ones obtained from a classical deterministic formulation,
while preserving most of the solution’s quality.

Unlike most classical scheduling problems, operations in a
space mission must be planned days ahead. Complex de-
cision chains and communication delays prevent schedules
from being arbitrarily modified, hence online reoptimiza-
tion approaches are usually not appropriate. The problem of
scheduling a set of operations in a constrained context such
as the Mars Desert Research Station (MDRS, Fig. 1) is not
trivial, even in its classical deterministic version. It should
be seen as a generalization of the well-known NP-complete
job-shop scheduling problem (Lenstra and Kan 1979), which
has the reputation of being one of the most computationally
demanding (Applegate and Cook 1991). (Hall and Maga-
zine 1994) insist on the importance of mission planning, cit-
ing the Voyager 2 space probe for which the development of
the a priori schedule involving around 175 experiments re-
quiring 30 people during six months. Nowadays, hardware
and techniques have evolved and it is likely that a couple of
super-equipped (i.e. with a brand new laptop) human brains
may suffice in that specific case. Yet, the problems and re-
quirements have evolved too and space missions have to deal
with teams of astronauts.

At the MDRS, computing an optimal schedule becomes
significantly less attractive as problem data, such as the ma-
nipulation time of experiments, are different from their pre-
dicted values. In a constrained environment with shared re-
sources and devices, such deviations can propagate to the
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Figure 1: The Mars Desert Research Station (MDRS) in the
Utah desert, U.S, is a Mars analog planetary habitat.

remaining operations, eventually leading to global infeasi-
bility. The purpose of this paper is to investigate, based on
the real case study of a Mars analog mission, the impact of
stochastic robust modeling against a classical deterministic
approach on the reliability of a priori mission planning.

Illustrating problem. Consider four jobs {A,B,C,D} to
be scheduled on one single machine. Each job has one or
several time windows, precedence constraints and minimum
transition time constraints, the latter stipulating a minimum
delay between the completion time of a job and the begin-
ning of another. We assume jobs to be atomic, the processing
of a job cannot be split on several time windows. The hori-
zon comprises two working days of five hours each (9am to
2pm). Fig. 2 provides the remaining details of the problem,
which we will refer to as the ABCD problem.

A common goal for a deterministic scheduling problem is
to minimize the completion time of the entire project, which
is achieved here by the sequence solution s = 〈A,B,C,D〉.
It is in fact the only optimal solution: A starts at 9am, then
job B at 10, job C from 12 to 1pm, job D from 1 to 2pm. Now
suppose that A’s processing time is uncertain. If A reveals
to require slightly more than one hour, then job B will not
be completed within its time window, and is reported to the
second day. Solution s is no longer feasible, as job C is not
completed during the first day. Assuming the mean process-
ing time of A to be of 1 hour, it has a significant probability
to exceed it, whatever the distribution is (0.5 if it is symmet-
ric). No matter how confident we are about A’s processing
time and the degree of its uncertainty (e.g. standard devia-



Figure 2: The ABCD problem. Each job has a processing
time of 1 or 2 hours and a time window spanning either the
entire work day (9am to 2pm) or part of it (9am to 12am).
Job C must wait at least one hour after completion of A to
start and must be completed during the first day.

tion), a non null probability for A’s processing time to reveal
not to be exactly 1 hour leads a high probability of failure
(≈ 50% in most of the cases). A reliable scheduler should
rather suggest the more robust solution s = 〈A,C,B,D〉.

Application and contributions. How to deal with pro-
cessing time uncertainty when facing a larger, complex,
scheduling problem which possibly involves multiple op-
erators, unknown probability distributions and exotic con-
straints? In this paper, we show how even such simple in-
sights can actually be applied to real project development
and planning. As a proof of concept, we demonstrate the
contribution of robust modeling on the preparation and im-
plementation of the UCL to Mars 2018 project that took
place at the Mars Research Desert Station (Utah), March’18.

Project management realizes about 30% of the world
gross product (Turner et al. 2010). Besides the space ana-
log mission, our approach naturally applies to a larger set of
project scheduling contexts whereas most of existing studies
have solely been done in machine scheduling environments
(Herroelen and Leus 2005).

We formulate the core problem as a robust single-machine
scheduling problem with random processing times. Tasks
are subject to precedence constraints, strict time windows
and minimum transition times. We show how the robustness
of a solution, in terms of its probability to remain feasible
to operational time constraints, can be exactly computed in
pseudo-polynomial time. We also identify theoretical limita-
tions to computational tractability and propose alternatives.
Finally, we adapt the core problem to the goals pursued and
constraints faced during the UCL to Mars 2018 mission, and
empirically measure the average gain of using our general-
ized stochastic formulation instead of a deterministic one.

Core problem
For now we consider a robust single-machine scheduling
problem with random processing times (R-SMS-T), involv-
ing job precedence, time windows and minimum transition
times constraints. Approximation functions will thereafter
be used to generalize the core theoretical results to the spe-
cific problem we face in our MDRS case-study, a robust
job-shop scheduling problem involving additional specific
constraints. A recent review on stochastic scheduling is pro-
vided by (Chaari et al. 2014).

Input. A discrete time horizonH = {0, ... , h} on which a
set J = {j1, ... , jn} of jobs must be scheduled on an unique
machine (or operator). The machine processes one job at a
time and each job must be processed exactly once. Each job
j comes with a probability pdj that j requires a processing
time d ∈ H , with

∑
d∈H p

d
j = 1. Each job j is associated

a set TWj ⊆ H of valid time intervals to process j, called
time windows. Precedence constraints state that a (possibly
empty) set J<j ⊂ J of jobs must be completed before start-
ing job j. A minimum transition time states a minimum delay
wmin
j′,j to be observed between completion of a job j′ ∈ J<j

and the beginning of j.

Solution and formulation. A solution to the R-SMS-T is
an ordered sequence of jobs: s = 〈ji, ... , ji′〉. Every job
j ∈ J appears exactly once in the sequence. We use a two-
index flow formulation in order to describe s: binary deci-
sion variables xij denote whether or not the job j ∈ J is
scheduled immediately after i ∈ J . Additional variables x0j

(resp. xj0), for j ∈ J refer to the first (resp. last) job j of the
sequence.We formulate our R-SMS-T as:

max
s

r(s) (1)

s.t.
∑

i∈J0\{j}

xij =
∑

i∈J0\{j}

xji = 1 j ∈ J (2)

uj − ui + nxji ≤ n− 1 j, i ∈ J (3)

ui ≤ uj − 1 j ∈ J, i ∈ J<j (4)

xji ∈ {0, 1} j, i ∈ J0 (5)
where we note J0 = J ∪ 0 for conciseness. The robustness
measure r(s), detailed in the next section, gives the proba-
bility of s to remain feasible. Flow conservation constraints
(2) state that a job is preceded (and followed) by exactly one
job i. In fact, inequalities (2)-(3) define the solution space
of a directed traveling salesman problem (TSP), when us-
ing a so-called MTZ-formulation (Miller, Tucker, and Zem-
lin 1960) in order to explicitly formulate as uj (3) the po-
sition of job j in the sequence. We then express precedence
constraints quite naturally in (4). Since the time dimension is
stochastic, time windows and minimum transition time con-
straints cannot be part of the description of a solution to the
R-SMS-T. Instead, they contribute to objective function r(s)
as described in the next section. Constraints (2)-(5) are then
sufficient to define the solution space of our robust single-
machine scheduling problem with random processing times.

Recourse assumptions. In order to be efficiently com-
puted, r(s) requires assumptions (so-called recourse strat-
egy) on how s is adapted to the realizations of the random
processing times:

1. The machine (operator) executes its jobs according to the
ordered sequence defined by s ;

2. When starting a job j, one does not know its processing
time until it is actually completed.

3. A job that is not completed by the end of its current time
window must be re-processed from scratch at the begin-
ning of its next time window, if any (otherwise 4).



4. In case the machine fails at processing a job due to unfor-
tunate processing times, the sequence is interrupted.

These assumptions directly come from the definition of our
problem. In particular, by fixing the sequences of s as-
sumption 1 explicitly forbids reoptimization. A relaxation
would lead to a dynamic and stochastic problem, and would
no longer permit the exact evaluation of r(s) in pseudo-
polynomial time (unless P=NP). Furthermore, operational
contexts such as space missions do not allow the modifi-
cation of the schedule in the middle of a work day. Our re-
course strategy still provides a good indicator for situations
that suggest reoptimization at the end of each work day. In
fact, under assumptions 1-4 the probability to remain feasi-
ble as computed by r(s) is a lower bound to the probabil-
ity of perfect reoptimization (optimally reoptimizating each
time a random event realizes) to remain feasible.

Robustness of a solution
We define the robustness r(s) of a given solution s as
its probability to remain feasible. This can be trivially ex-
pressed in terms of the set of possible scenario realizations:

r(s) =
∑
ξ∈E

Pr{ξ}f(s, ξ) (6)

where E is the set of all probable scenarios and f(s, ξ) is
the indicator function returning 1 if and only if solution s
remains feasible under scenario ξ, that is, the case described
by assumption 4. is not encountered. Since the size of E
grows exponentially with respect to the number of jobs, the
computation of (6) rapidly becomes intractable. The most
natural approximation for such an enumerative function is
called Sample Average Approximation (Ahmed and Shapiro
2002), which relies on Monte Carlo sampling to evaluate
only a subset of E. Its accuracy however depends on the
number of samples taken into consideration.

Instead, one can reason on the jobs themselves (and their
associated random variables) in order to derive a tractable
formula to compute r(s) exactly. Let us consider that a job j
is correctly processed in a scenario ξ if it is completed within
one of its valid time windows and fulfills all minimum tran-
sition time constraints with other jobs, if any. It follows that
the probability that a solution s remains feasible is the prob-
ability that every job succeeds in that sense,

r(s) = Pr{
∧
j∈J

job j correctly processed in s}

= Pr{jlast correctly processed in s} (7)

which, by following assumption 4., is also the probability
(7) that we succeed at proceeding the last job jlast ∈ J of the
sequence s = 〈j, ... , jlast〉.

In our ABCD example, r(s) is the probability that job D
eventually gets completed. Our time horizon is composed
by two consecutive five-hour work days, modeled as a dis-
crete set H = {0, ... , 599} which contains 600 time units
of one minute each. The first 300 time units belong to the
first work day, and so on. Since job B can only be processed
during the first three hours of each day, we have TWB =

Figure 3: Time horizon of job B. Blue cells represent
TWB = {0, ... , 179, 300, ... , 479}. When t <= 179 then
TW−B (t) = ∅. For 180 ≤ t ≤ 479, we have TW−B (t) =

{0, ... , 179} and, for t ≥ 480, TW−B = {300, ... , 479}.

{0, ... , 179, 300, ... , 479}. Similarly, TWC = {0, ... , 299}
as job C must be completed the first day. We also denote by
TW−j (t) ⊆ TWj the set of time units which only belong to
the time window that directly precedes time t and does not
contain it. Fig. 3 illustrates H according to job B. We note
j− ∈ J the job that directly precedes j in solution s.

Let P end
j (t) the probability that job j ∈ J is completed at

time t exactly, and P start
j (t) the probability that j is started

at time t precisely. Note that, consequently to assumptions
2. and 3., starting a job does not systematically involve its
completion. Job jlast is therefore correctly processed if and
only if it is completed during one of its time windows:

r(s) =
∑

t∈TWj

P end
jlast

(t) (8)

Completion times. For every job j ∈ J , the probability
P end
j (t) that j finishes exactly at discrete time unit t ∈ H

is constituted of all the possible processing times that could
have led to complete the job at that specific time t:

P end
j (t) =

{ ∑t
d=0 p

d
j · P start

j (t− d) if t ∈ TWj

0 otherwise.
(9)

Starting times. We use starting times to handle time win-
dows. Suppose we know the probability P ready

j (t′) that the
machine becomes ready for job j at time t′ ≤ t, in the sense
that it is ready as soon as it completes the previous job j−,
and that any minimum transition time constraint between a
job j′ and j is fulfilled. Then, P start

j (t) is the probability that,
according to P ready

j and j’s time windows, one actually starts
to process job j at a current time t. We decline the computa-
tion of P start

j (t) in three different cases, depending on t:
• t ∈ TWj ∧ t − 1 6∈ TWj : t is the first time unit of the

current time window. For job B, this corresponds to b cells
in Fig. 3. There are two possible reasons for starting a job
at such particular moments:
– Previous job, if any, just completed or did earlier. j

must wait for current time window to begin (first sum-
mation term below). In the case of job B, at t = 300 the
first summation ranges from ΓB(300) = 180 to 300.

– j had to be reprocessed (second summation term be-
low), as last attempt (during previous time window
TW−j ) revealed to require too much time to complete
and had to be interrupted due to assumption 4. In the
case of job B, at t = 300 the second summation ranges
in {(t′, d) : 0 ≤ t′ ≤ 179, t′ + d > 180}.



Putting the two cases together then leads to:

P start
j (t) =

t∑
t′=Γj(t)

P ready
j (t′) +

∑
t′∈TW−j (t)

d: t′+d−16∈TWj

P ready
j (t′) pdj (10)

where Γj(t) is the first time unit that directly follows the
previous time window (from time t) that is, the first mo-
ment from which we could wait for the opening of the
current time window. For job B, this corresponds to the Γ
cells in Fig. 3: ΓB(0) = 0 and ΓB(300) = 180.

• t ∈ TWj ∧ t − 1 ∈ TWj : t lies on a legal time unit, but
not the first of the current time window. The only reason
for starting the job at that moment is that the machine just
becomes available (ready) at current time t:

P start
j (t) = P ready

j (t) (11)

For job B, this corresponds to c cells in Fig.3.
• t 6∈ TWj : t is not a legal time unit for processing j,

P start
j (t) = 0. (12)

For job B, this corresponds to cells a and d in Fig.3. Note
that the schedule definitely fails at processing j if there
is no future legal time unit. This happens in Fig.3 if the
machine becomes available at d cells.

Availability times. We define P ready
j (t) as the probability

that the machine becomes available for job j at a time t. It is
the probability that job j could be started at time t, regarding
both the completion time of j− and minimum transition time
constraints only (i.e. regardless time windows of j).
First job of a sequence. If job j is the first of the sequence s
then the moment at which the machine becomes available is
obviously time unit zero:

P ready
j (t) = 1 if t = 0, 0 otherwise. (13)

Subsequent jobs. We now consider a job j which is not the
first of its sequence. If there is no minimum transition time
constraint associated from any job j′ to j, then the machine
is ready for job j as soon as previous job j− is completed:

P ready
j (t) = P end

j− (t) (14)

If j has exactly one minimum transfer time constraint with
an unique job j′ ∈ J<j , probability P ready

j (t) becomes

P ready
j (t) ≡ Pr{t = max(end(j−), end(j′) + wmin

j′,j)} (15)

where end(j) is the time at which job j reveals to be com-
pleted. Namely, either job j′ has completed for long enough
(at a time t′ ≤ t−wmin

j′,j) to not worry about minimum transi-
tion time wmin

j′,j and the operator waits for the completion of
j− in order to start j, or the previous job j− is completed yet
but j must be delayed until current time t coincides with the
completion time of j′ plus minimum transition time wmin

j′,j . If
the sequence is s = 〈A,B,C,D〉 in our example, P ready

C (t)

is the probability for t to be exactly equal to the maximum
of 1) the completion time of previous job B and 2) that of A
plus one hour. Mathematically,

P ready
j (t) = Pr{end(j−) = t ∧ end(j′) ≤ t− wmin

j′,j}
+ Pr{end(j−) < t ∧ end(j′) = t− wmin

j′,j} (16)

Indeed, in absence of time windows for j either we start j
as soon as j− finishes (first term of (16)), or we wait after
the completion j− until we reach appropriate time end(j′)+
wmin
j′,j (second term of (16)). Since the completion time of j−

clearly depends on that of j′, it finally leads to:

P ready
j (t) =

∑
t′≤t−wmin

j′,j

P end
j′ (t′) · P end

j−|j′(t, t
′)

+
∑
t′<t

P end
j′ (t− wmin

j′,j) · P end
j−|j′(t

′, t− wmin
j′,j) (17)

where P end
j−|j′(t, t

′), the probability previous job j− com-
pletes at time t conditionally that job j′ completes at time
t′ ≤ t, can be computed recursively by following (9) where
P end
j′ (t′) = 1 and P end

j′ (t′′) = 0, for t′′ 6= t′. In particu-
lar, in case j′ = j− then (17) reduces to P end

j− (t − wmin
j′,j),

since P end
j−|j−(t, t′) = 1 if t′ = t, zero otherwise. Note that

supplementary minimum transition time constraints can be
associated to j by adding terms to the max operator in (15).
Intractability issue. Having two jobs j′, j′′ on which j de-
pends for minimum transition time, one has to take condi-
tional probabilities P end

j−|j′,j′′(t, t
′, t′′) into account for every

combination of t′, t′′ ∈ H . In the case the last job jn of a
solution s = 〈j1, ... , jn〉 is constrained by minimum tran-
sition times involving previous jobs j1, ... , jn−1, computing
all the conditional probabilities is equivalent to enumerating
all the O(hn) possible scenarios. In order to keep the com-
putation tractable, in what follows we assume that there is at
most one such constraint per job.

Computational complexity. Provided a solution to n
jobs, the complexity of computing (7) is equivalent to the
one of filling up three matrices P ready, P start and P end, each
of size nh, containing respectively all the P ready

j (t), P start
j (t)

and P end
j (t) probabilities. The computational effort required

to compute each cell significantly varies depending on the
presence of minimum transition time constraints.
No minimum transition times. Once the probabilities in cells
(j, 1 · · · t) of P end are known, the cell P ready

(j,t) can be com-
puted in O(1) using (14). Then, using probabilities in cells
(j, 1 · · · t) of P ready, cell P start

(j,t) can be computed in O(h) ac-
cording to equation (10)-(12). In fact, the double summation
in the second term of (10) is amortized in O(h). Finally,
probabilities (j, 1 · · · t) of P start allows to compute cell P end

(j,t)

in O(h) according to equation (9). A solution consisting in
n jobs and a time horizon of length h leads to a worst case
complexity of O(nh2).
Minimum transition times. In the case where each job can
have a most one minimum transition time with another job,



we consider the worst case involving a sequence 〈j1, ... , jn〉
in which all j2, ... , jn jobs have a minimum transition time
constraint with j1. It then requires to computeO(n2) condi-
tional probability matrices P end

j|j′(t, t
′) each of size h2, each

cell still computable in O(h). That enables the computation
of P ready values in O(h) according to equation (17). The
overall complexity is now of O(nh2 + n2h3). However, if
we allow a job to have minimum transition time constraints
with q other jobs, then the P end

j|j′1...j′q
matrix will be of expo-

nential size hq .

Stochastic transition times. There are some contexts in
which transition times could also be considered stochastic.
In fact, for a fixed planning, transitions may be equivalently
seen as jobs. Stochastic transition times may be thus trivially
handled, by simply replacing in a planning each stochastic
transition time by a job with same probability distribution.
Hence we equivalently end up with sequences of jobs, but
no transition times.

The UCL to Mars 2018 case study
During our stay at the Mars Desert Research Station
(MDRS, Fig. 1), our crew conducted 10 experiments (see
ucltomars.org/#!/crews/190/projects ) regrouped in 7 re-
search projects. Each researcher from the team was associ-
ated to a project, composed of a set of jobs. A researcher acts
as an operator (machine), subject to constraints such as those
covered by the R-SMS-T, plus a few additional ones. The
goal of the crew’s executive officer was therefore to model,
and solve, the associated scheduling problem globally.

In-place operations
The a priori horizon covered the thirteen 9-hour work days
of the entire mission. At the end of each day, we solved an
updated schedule on the remaining horizon, depending on
the scientific outcomes of the current day. For practical rea-
sons, each researcher was only able either to perform his/her
own jobs, or to assist other researchers.

Deterministic model. As we were provided 7 operators
instead of a single one, the problem we faced at MDRS had
been modeled in-place as a deterministic job-shop schedul-
ing problem (JSP), assuming processing times to be per-
fectly known. The modeling of all crew members’ research
projects merged within a global problem was inevitable,
as researchers at MDRS depend on limited and shared re-
sources. Some projects required extra vehicular activities
(EVAs), which for security reasons require between three
and five participants. EVAs usually take half a day (four
hours) in total, should be planned and approved days ahead
and happen at most once a day. In such context, all crew
members have their schedule linked to each others even con-
cerning research projects that do not involve EVAs.

The time horizon consists of 10 minutes time units, each
operational day counting 24× 6 time units. In fact, because
of transition time constraints the 15 non-working hours (out
of 24) must be considered as well. An example of project

Figure 4: Modeling of a research project combining botan-
ics (green) and biology (blue), conducted by crew member
Frédéric Peyrusson (UCLouvain, Belgium) .

model is depicted in Fig. 4. The model requires three dis-
tinct EVAs and combines two different projects lead by the
same researcher. Because a minimum number of people is
required to validate an EVA, it is however likely that the re-
searcher attends additional EVAs. In fact, the model depicted
is actually connected to the projects lead by the seven other
researchers thorough these EVA jobs.

In addition to precedence and minimum transition time
constraints, we also notice a 24h maximum transition time
between completion Treatment and that of Exposition2.
Maximum transition time constraints are easily handled in
the deterministic problem. The stochastic formulation how-
ever requires to be adapted, as explained hereafter.

Finally, beyond feasibility the model maximizes a quality
measure, depending on several preferences predefined by the
crew members, such as maximizing the delay between sec-
ond and third EVA in Fig. 4. We refer to this solution quality
function as fmdrs hereafter.

Solutions. Optimizing the deterministic problem was
achieved in-place using a basic local search (LS) approach,
exploiting well-known sequence neighborhood operators
and a simulated annealing meta-heuristic. Our LS algorithm
is directly adapted from the one for stochastic VRPs of
Saint-Guillain et al. (2017) , while replacing vertices, ser-
vice times and vehicles by jobs, processing times and ma-
chines, respectively. On Mars, a solar day (commonly called
a ”sol”) lasts approximately 24h39m. We refer to the day
preceding the first mission sol as SOL0. The nth day of the
mission is called SOLn. A new problem is reformulated at
the end of each day, based on the past operations, and some-
times by integrating new specific constraints or preferences.
Fig. 5 shows an example of a schedule as recomputed during
the mission, from SOL6. Taking into account the initial com-
plexity of the model, this motivated the choice for a heuristic
algorithm over an exact approach.

The problem counts from 237 jobs at SOL0, to 149 jobs
at SOL7. Time horizon, at SOL0, is composed of 13 days of
144 time units, each of 10 minutes.



Figure 5: Overview of the first six days of the global schedule as recomputed in-place on SOL5 evening (8 sols remaining).

A posteriori analysis: stochastic robust approach
This section investigates the impact of taking uncertainty
into account at planning phase of a Mars analog mission,
provided the robustness measure we propose.

Solution method and solution evaluation. In order to
study the impact of our robust formulation, independently
of the technology used, we use the same solution algorithm
as used for the deterministic problem.

The objective function computed by the solver at each so-
lution s is replaced by the heuristic:

f(s) = fmdrs(s)× rmdrs(s)

where fmdrs(s) is the quality of s as computed in the deter-
ministic context. If the solution is not deterministic-feasible,
that is if s does not fulfill all the constraints of the problem
as described in section (including constraints which are spe-
cific to the MDRS, such as minimum and maximum people
attendance during EVAs), then fmdrs(s) = 0. In other words,
we optimize based on the deterministic solution quality, pro-
cessing times hence being assumed to be fixed to their ex-
pected values, multiplied by the robustness measure of the
solution against processing time variability.

MDRS specific constraints and issues. Note that follow-
ing (19) our definition of r(s) does not involve the multiple
parallel machines context nor the maximum transition time
constraints, whereas they were both present on projects we
conducted at MDRS.

In case there is no minimum transition time constraint be-
tween jobs of a set of machines M , as it case the case at
MDRS, our definition of r(s) can be easily generalized:

r(s) =
∏
m∈M

( ∑
t∈TWj

P end
jmlast

(t)
)

(18)

where jmlast is the last job assigned by machine m ∈ M ,
since the execution of the jobs (and hence the P end

jmlast
(t) proba-

bilities) are consequently independent between the different
machines. This is true even for EVAs, despite their minimum
and maximum people requirement. For practical reasons, an
EVA could only take place during mornings, from 9am to
12am. Together with the lunch activities, EVAs are the only
jobs having a fixed deterministic duration (3h). The prob-
ability of respecting the scheduled people attendance to an
EVA is then equivalent to the probability for all the assigned
people to respect this 9am-12am time window.

Similarly to the minimum transition time constraints,
maximum transitions are computationally very hard to take
into account while computing an exact r(s). Instead, here
we use the following approximation:

rmdrs(s) ≈
∏
m∈M

( ∑
t∈TWj

P end
jmlast

(t)
)

×
[
1−

∑
j∈J

∑
j′∈J<

j

( ∑
t′∈H

∑
t≥t′+wmax

j′,j

P end
j′ (t′)P end

j (t)
)]

(19)

by supposing independence between completion times. Here
wmax
j′,j is the maximum allowed transition time between com-

pletion of j′ and that of j, if any, otherwise wmax
j′,j = h.

The additional second term is one minus (an upper bound
on) the approximated probability that a maximum transition
time constraints is violated.

Horizon Partitioning Approximation (HPA). Another
issue with the MDRS case study is the computational effort
required to compute r(s), which critically depends on the
length of the horizon. In practice, computing rmdrs(s) on the
entire horizon takes at least several minutes, even at SOL7.
Instead, we introduce the rmdrs

∆ (s) measure, which we denote
by Horizon Partitioning Approximation. HPA consists in the
robustness of s when the horizon is partitioned in indepen-
dent parts of ∆ days each. For instance, rmdrs

2 (s) is computed
by first applying rmdrs(s) on days {1, 2} only, using a two-
days horizon and considering only the jobs a priori planned
at days {1, 2} by s. The same computation is then performed
on days {3, 4}, by considering the days {1, 2} to be fixed,
and so on until we cover the entire horizon. A pass at days
{d, ... , d + ∆ − 1} computes the probability that, if every-
thing happens as planned by s up to start of day d, all the jobs
planned for days {d, ... , d+ ∆− 1} get actually completed
during those days. A job at day d that has a transition time
constraint with a job j′ from a day d′ < d simply sees its
time window modified accordingly, since completion time
of j′ is supposed to be fixed. Finally, we multiply the proba-
bilities obtained at each pass to get rmdrs

∆ (s). Using rmdrs
1 (s)

then provides the probability that every job gets completed
the day it is planned, which is a pessimistic approximation
of the robustness of s, since in general delaying a some job
during a few days does not necessarily break feasibility. The
later can be viewed as optimizing a stability criterion (Goren
and Sabuncuoglu 2008), in the sense that using ∆ = 1 we
approximate the expected deviation from daily objectives.



1. Exact mean values 2. µ̂±10% 3. µ̂±30% 4. Underestimates 5. Overestimates

f = fmdrs× fmdrs× fmdrs× fmdrs× fmdrs×
fmdrs rmdrs

1 rmdrs
2 fmdrs rmdrs

1 rmdrs
2 fmdrs rmdrs

1 rmdrs
2 fmdrs rmdrs

1 rmdrs
2 fmdrs rmdrs

1 rmdrs
2 δ

SOL0 0.7 84.0 79.5 0.7 74.9 67.0 0.1 63.7 54.5 0.1 5.5 24.0 31.8 92.9 94.4 7
SOL1 6.1 90.2 96.8 0.7 75.5 87.0 0.1 55.6 66.7 0.1 8.0 15.3 20.3 93.3 97.3 4
SOL2 1.4 97.5 96.3 4.0 93.6 90.3 0.1 45.7 40.3 0.1 57.7 44.5 15.5 99.1 97.5 3
SOL4 28.3 90.0 80.9 25.4 89.6 79.5 21.1 66.1 40.3 0.3 59.9 36.2 71.4 86.5 75.3 8
SOL5 2.9 89.6 88.7 0.5 91.7 91.0 2.9 99.6 99.5 0.1 0.6 1.9 41.4 99.9 99.9 3
SOL7 4.8 91.6 89.3 0.1 64.3 60.1 9.7 94.3 90.9 0.1 5.4 5.3 22.5 99.2 99.0 17

Avg. 7.4 90.5 88.6 4.9 81.6 79.6 5.6 70.8 65.4 0.1 22.8 19.5 33.8 95.1 93.9 7

Table 1: Average percentage of times the solutions remain feasible despite processing time uncertainty, depending on the quality
of available a priori stochastic knowledge. Column δ gives the average loss percentage of deterministic quality fmdrs.

Experimental plan. Our empirical study is based on real
data from the UCL to Mars 2018 analog mission. Our bench-
mark is composed of the sequence of updated problems we
faced at SOL1, SOL2, SOL4, SOL5, SOL7, in addition to
the initial problem modeled at SOL0. Unfortunately, models
faced at sols 3, 6, 8-12 were lost due to a technical issue.

However, we ignore the exact probabilities that describe
the processing times of our jobs. Good predictions require
a significant amount of observations, whereas we are only
provided the scenario that realized during the mission. Col-
lecting a sufficiently large set of observations is often impos-
sible in practice and it is often both necessary and realistic
to consider the real distributions as unknown (or hidden).
Let Xj be the real probability distribution of j’s process-
ing time, and X̂j the predicted one used by r(s). As Xj

is unknown, we approximate it using a normal distribution:
X̂j ∼ N(µ̂j , σ̂). We consider five different experimental
contexts, depending on the quality of the approximations:

1. We know exactly the mean value of each distribution:
E[Xj ] = µ̂j ,∀j ∈ J ;

2. The approximations are fairly good:
E[Xj ] ∼ Un(µ̂j ± 10%),∀j ∈ J ;

3. The approximations are of poor quality:
E[Xj ] ∼ Un(µ̂j ± 30%),∀j ∈ J

4. The approximations are globally underestimating:
E[Xj ] ∼ Un([µ̂j − 10%, µ̂j + 30%]),∀j ∈ J

5. The approximations are globally overestimating:
E[Xj ] ∼ Un([µ̂j − 30%, µ̂j + 10%]),∀j ∈ J

whereas in all five cases each hidden discrete distributions
Xj is randomly generated according to E[Xj ], by using
a normal distribution with 50 rolls only which results in
a highly imperfect normal distribution. Note that 4. stands
for a pessimistic context in which processing times will of-
ten reveal to be longer than initially estimated. On the con-
trary, context 5. assumes the estimations to globally overesti-
mate the real distributions. Such an optimistic assumption is
however of particular interest in project management, where
overestimating is a widespread practice to mitigate the risks.

A solution s is optimized by using either the determinis-
tic objective function, f = fmdrs, or the proposed stochas-
tic measure, f = fmdrs × rmdrs

∆ , exploiting the provided X̂j

approximate distributions. In order to assess the quality of
s, we measure its true robustness by simulating its execu-
tion on a sufficiently large number of scenarios (105), hence
using Sample Average Approximation (Ahmed and Shapiro
2002). For each experimental context, from 1. to 5., the 105

scenarios are randomly sampled from the Xj hidden real
distributions. We then measure the average proportion of the
scenarios in which s remains feasible. We refer to this ro-
bustness measure as SAA105(s).

Results. For each instance SOLn, we compute a set of 10
solutions by first using the deterministic objective function
f = fmdrs, then by using f = fmdrs × rmdrs

1 and finally by
using f = fmdrs × rmdrs

2 , with 30 minutes of computation
time. Table 1 shows the average results obtained by these
sets of solutions as the percentage of simulations in which
the schedule remains feasible, depending on the instance
and the experimental context 1. to 5. We obtain these results
by computing SAA105(s). For each instance, the δ column
gives the solutions average relative difference in their deter-
ministic attractiveness, as computed by fmdrs.

Clearly, the solutions obtained using the two stochastic
robust approaches strongly outperform those of the deter-
ministic model. Obviously, stochastic models perform better
under optimistic assumptions, namely exact (1.) and overes-
timating (5.) distributions. The largest gaps in the average
robustness of both deterministic and stochastic models ap-
pear under context 1., since at that point the stochastic HPA
functions rmdrs

1 and rmdrs
2 are computing values being almost

equivalent to the real ones. The most preferred situation is
naturally context 5. in which the mean processing times are
globally overestimated, since whatever the solution is, it is
likely to be more robust than under other contexts. However,
it is interesting to note that even under such fortunate con-
ditions, the deterministic model produces solutions that suc-
cess ±34% of the time, on average, against ±95% for those
obtained using the proposed stochastic model. Furthermore,
this improved robustness comes at the price of deteriorating
by only 7% of the solution’s deterministic quality (δ column)
on average. Under contexts 2. and 3., average robustness is
increased from the deterministic approach by more or less
75% and 65% respectively, when using rmdrs

1 . Finally, using
∆ = 1 compared to ∆ = 2 in rmdrs

∆ reveals to be more advan-
tageous here, although this is strongly problem dependent.



f = 1. 2. 3. 4. 5. δ

fmdrs × rmdrs
1 90.5 81.6 70.8 22.8 95.2 7

fmdrs×

SAA102 89.4 78.6 47.3 8.3 96.6 15
SAA5.102 90.6 79.8 49.7 16.7 97.6 14
SAA103 89.7 78.3 56.2 19.4 97.1 12
SAA5.103 88.8 79.3 62.3 21.6 98.2 11
SAA104 87.0 76.1 55.7 19.3 96.8 14

Table 2: Average results obtained by using the SAA-based
method, depending on the experimental context (from 1. to
5.), compared to average results obtained by f × rmdrs

1 . Dif-
ferent scenario pool sizes are considered, from 102 to 104.

f = 1. 2. 3. 4. 5. δ

fmdrs × rmdrs
1 89.9 81.0 68.1 19.6 95.1 8

fmdrs× SAA5.102 86.9 74.7 46.1 12.4 96.5 12
SAA103 85.7 74.5 51.8 12.1 96.2 14
SAA5.103 69.5 56.5 39.4 8.6 86.3 11

Table 3: Average results obtained by using the SAA-based
method, compared to average results obtained by f × rmdrs

1 ,
computation time reduced to 10 minutes.

In fact, in our MDRS case study involving time horizons
that span from 6 to 13 days, ∆ provides a parameterizable
trade-off between accuracy and computational effort.

Comparison with SAA. Results reported in Table 1
clearly motivate the use of a robust formulation. However,
the design and implementation of rmdrs and rmdrs

∆ can only
be justified if it allows better average results compared to
the Sample Average Approximation (SAA) method.

Table 2 reports the average results obtained by repeating
all the experiments, while using f × SAAN as LS objective
function, with the number N of sampled scenario varying
from 102 up to 104. Both accuracy and computational effi-
ciency of SAA depends on N , which is in fact problem de-
pendent. In our case,N = 5.103 seems to constitute the best
compromise on average, when computational time is limited
to 30 minutes. Despite the interesting results obtained by
SAA5.103 , it is however outperformed by rmdrs

1 in contexts
2., 3. and 4. In terms of robustness, these contexts are of the
utmost importance for anyone concerned by the issues and
limitations of processing time estimations.

The superiority of a closed-form function, such as rmdrs
1 ,

over SAA is closely related to the available computation
time. It is likely that, provided a couple of hours rather than
of 30 minutes, SAA would eventually outperform rmdrs

1 . In
contrary, reducing computation time to 10 minutes tends to
significantly reinforce the superiority of rmdrs

1 , as show in
Table 3. We note that, as we reduce computation time, SAA
obtains better results by reducing the number of samples,
hence improving diversification in the LS process.

Accuracy of rmdrs. Moving from the theoretical core
problem to the real one faced at MDRS naturally intro-
duces limitations, leading to the proposed simplifying as-
sumptions. In Fig. 6, we show how this impacts the accu-

Figure 6: Average deviation of rmdrs
1 (blue) and rmdrs

2 (red)
robustness measures (y-axis), depending on the solutions’
true robustness (x-axis). Top: SOL0. Bottom: SOL7.

racy of the robustness functions rmdrs
1 and rmdrs

2 , on both in-
stances SOL0 and SOL7. For every incumbent solution s
encountered by the LS algorithm during the previous exper-
iments (±8700 solutions for SOL0), we recomputed the true
robustness of s under experimental context 1., thus by using
SAA105 . Fig. 6 shows how the value rmdrs

∆ (s) − SAA105(s)
evolves with respect to SAA105(s).

We naturally observe that the accuracy of the robustness
measure, as computed by rmdrs

1 and rmdrs
2 , first depends on

the size of the problem: there is a clear difference between
SOL0 (237 jobs) and SOL7 (149 jobs). We note that rmdrs

2
seems globally more accurate than rmdrs

1 . Having a closer
look reveals that under SOL0 (resp. SOL7), around 82%
(resp. 99%) of values computed by rmdrs

2 are comprised in
SAA105(s)± 0.01, whereas only 75% (resp. 99%) for rmdrs

1 .
The average accuracy of rmdrs

∆ globally decreases as the
true robustness of the solutions increases. This suggests a
hybrid approach, mixing rmdrs

∆ in the early stage of the LS
process, whereas SAA (e.g. SAA5000) as soon as the ro-
bustness of the incumbent solution exceeds some predefined
threshold. Finally, we observe that under SOL7, rmdrs

∆ is
globally not overestimating the true robustness. As a matter
of fact, while examining the other SOLn instances, the pro-
portion of over-estimations tends to decrease with the prob-
lem size (i.e. the number of jobs).

Length of the horizon and deterministic quality. It is in-
teresting that, in the experimental results, no relation appears
between the number of operational days and the determinis-
tic quality of a solution. Our first intuition tells us that the
shorter is the horizon, the better the deterministic quality,
because the more likely we respect the a priori schedule. We
think that what actually happens is that the length of the hori-
zon, in each instance, is compensated by the urgency of the
tasks. In fact, when 10 days remain, one can afford postpon-
ing tasks because of a poor decisions. When there are only
2 days left, things start to be too urgent and postponing may
not remain an option anymore. In the end, both compensate
so that the average quality of a deterministic planning may
after all not depend on the length of the horizon.



Conclusions and research directions
In the context of a recent Mars analog mission, we propose
robust models for daily decisions in operations scheduling.
Simulations show that our method, by taking the processing
time uncertainty into account when designing a schedule,
produces solutions significantly more reliable than those ob-
tained using a classical deterministic model, even when the
available stochastic knowledge is of very poor quality.

Our experiments take into account the uncertainty on the
available probability distributions themselves. We study how
the results are impacted by their accuracy, hence exploring
different experimental contexts. In particular, even when us-
ing a widespread risk mitigation practice that consists in
overestimating (at planning phase) all the average process-
ing times, the average probability of a mission success can
be multiplied by three when using our robust approach. The
solutions’ robustness comes at a relatively low price, their
quality being impacted by 7% on average, whereas the prob-
ability to stay feasible is significantly increased.

We explore two fundamentally different approaches for
evaluating the robustness of a solution: the proposed closed-
form formulas and the well known Sample Average Approx-
imation method. Depending on the problem and available
computation time, results suggest that the strengths of both
techniques could be combined into a hybrid algorithm.

Our current understanding of the problem could be im-
proved by conducting further experiments, on a broader set
of operational contexts. In fact, exploiting available data
from different projects is likely to require new specific, ex-
otic constraints to be considered at planning and optimiza-
tion phases, leading to a more comprehensive model.

Existing techniques for robust (a.k.a. proactive) schedul-
ing are mostly redundancy-based, or make use of tempo-
ral protection (Herroelen and Leus 2005). Based on ran-
dom variables, our method considers the original set of tasks
without duplicating nor modifying the data, and searches for
the expected best sequencing of the tasks. This makes our
approach compatible with the two previously cited ones, and
experiments should be conducted while mixing for example
with redundancy. Further research should also be considered
for alternative computational models such as Bayesian net-
works (Darwiche 2009), which naturally apply to our ran-
dom objective function, and for alternative representations
of the uncertainty, e.g. by using fuzzy numbers instead of
random variables (Huang and Teghem 2012).

Application to other domains. Whereas the paper con-
siders a Mars analog mission, the proposed approach can
be of interest in many other domains. Consider for instance
the case of the biotechnology industrial domain. In biotech
companies, scheduling the manufacturing projects (e.g. pro-
duction of vaccines, drugs, etc.) is a problem for which our
approach is potentially particularly valuable. The main rea-
sons are that: 1) their tasks must be performed by humans,
hence having highly variable processing times, and 2) they
must cope with really strict operational constraints (the so-
called GMPs). In fact, we claim that our approach applies
to any operational context for which planning or scheduling

involves time uncertainty and hard operational constraints.
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